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Steiner problem

Let S = {p1,...,pm} be a finite set in R>.

Problem (Steiner)

Find a connected set I' in R? such that S C T and the length of T is minimal.
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Steiner problem

Let S = {p1,...,pm} be a finite set in R>.

Problem (Steiner)

Find a connected set I' in R? such that S C T and the length of T is minimal.

Idea: Minimizing the total variation of suitable defined BV —functions in a m—sheeted
covering space is equivalent to minimize the length of a network that connects the m
points of S in the plane.

(Amato-Bellettini-Paolini)
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Construction of the covering Y of M :=R?\ S
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Construction of the covering space Y of M :=R?\ S
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A closer look at the topology of the covering space
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A closer look at the topology of the covering space
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A closer look at the topology of the covering space
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A closer look at the topology of the covering space
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The functions BVonstr

We say that a function v € BV(Y,{0,1}) is
constrained if

/_/,," Z U(y) = 17
”’ p(y)=x

D)~ T A
\ for every x € M =R?\ S.

(D,2) [ Moreover we add a suitable boundary
' — condition.

(D,3)

M
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The functions BVonstr

We say that a function v € BV(Y,{0,1}) is
constrained if

/_/,," Z U(y) = 17
S ply)=x

() A
\\/ for every x € M =R?\ S.
(D,2) it £ Moreover we add a suitable boundary
' - condition.
(D, 3) e Proposition
E . . Given u € BV onstr(Y') there hold:
s o [Dul(Y) = 2H}(p(),
M
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The functions BVonstr

We say that a function v € BV(Y,{0,1}) is
constrained if

/ S uy) =1,
. ply)=x

.1 A
\\/ for every x € M =R?\ S.

(D,2) it £ Moreover we add a suitable boundary
; i condition.

(D,3) - Proposition

: Given u € BV onstr(Y') there hold:
o |Du|(Y) = 2H (p(Ju)).

® the set S is contained in a connected
component of p(J.).

M
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Minimization Problem

Problem (x)

Find a function u € BV onstr(Y') such that its total variation is minimal.
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Minimization Problem

Problem (x)

Find a function u € BV onstr(Y') such that its total variation is minimal.

Problem (x) and the Steiner problem are equivalent.
To be more precise the solution of the Steiner problem is the connected network p(J.,;,),
where umin € BVeonstr(Y) is a solution of Problem (x).
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Calibration on coverings

Given a vector field ® : Y — R?, we denote with ®; : M — R? the pushforward
(according to the projection p : Y — M) of the restriction of ® on the i-th sheet of the
covering Y.

Definition

Let u € BVeonsix(Y), a calibration for u is a vector field ® : Y — R? such that
Q divd =0;
Q | — ;| <2 foreveryi,j=1,...m;
Q fy & - Du = |Du|(Y).
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Calibration on coverings

Given a vector field ® : Y — R?, we denote with ®; : M — R? the pushforward
(according to the projection p : Y — M) of the restriction of ® on the i-th sheet of the
covering Y.

Definition

Let u € BVeonsix(Y), a calibration for u is a vector field ® : Y — R? such that
Q divd =0;
Q | — ;| <2 foreveryi,j=1,...m;
Q fy & - Du = |Du|(Y).

If® : Y — R? is a calibration for u € BVionsi:(Y), then u is a minimizer for Problem (x).
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Calibration tmplies minimality

Consider a candidate minimizer u € BVeonstx(Y) and a competitor v € BVeonstx (Y).

We have

\Du|(y)@/d>.ou‘=l)/¢-0v
Y Y

:Z/d)j-va:Z/ <1>j(vj+—\/j_)~1/d’7'-t1
‘= /o =y,

/\Z@vf )|t € 232 p()

=[Dv|(Y)
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Calibration tmplies minimality
Consider a candidate minimizer u € BVeonstx(Y) and a competitor v € BVeonstx (Y).

We have

\Du|(y)@/¢.ou‘=”/¢-0v
Y Y

:Z/d)j-va:Z/ d>j(vj+—vj_)~1/d7-t1
‘= /o =y,

/\Zm )| o € 21 p(4)

=[Dv|(Y)

The last inequality holds because

+1 forj=j

+ p— . .

(v —vi)x)=q -1 forj=jp
0 for all j # j1, >
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Calibration tmplies minimality
Consider a candidate minimizer u € BVeonstx(Y) and a competitor v € BVeonstx (Y).

We have

\Du|(y)@/d>.ou‘=l)/¢-0v
Y Y

:Z/d)j-va:Z/ <1>j(vj+—\/j_)~1/d’7'-t1
‘= /o =y,

/\Zm )| o € 21 p(4)

=[Dv|(Y)

The last inequality holds because

+1 forj=j

+ p— . .

(v —vi)x)=q -1 forj=jp
0 for all j # j1, >

Moreover fixed a competitor v € BVeonst-(Y'), property (2) is necessary only for (i, ) such
that
H'(J, NJy) >0
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Calibrations in F(J)

Definition
Let 7 C {1,...,m} x {1,..., m}, we define

F(T) = {u € BVeonstr(Y) : H'(Ju; N Juy) =0, for every (i,j) € T}

Definition

A calibration for u in F(J) is a vector field ® : Y — R? such that
Q divd =0;
Q |®; —®;| <2 foreveryi,j=1,...m such that (i,j) ¢ J;
Q@ [, - Du=|Dul(Y).

A
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Calibrations in F(J)

Let 7 C {1,...,m} x {1,..., m}, we define

F(T) = {u € BVeonstr(Y) : H'(Ju; N Juy) =0, for every (i,j) € T}

A calibration for u in F(J) is a vector field ® : Y — R? such that
Q divd =0;

Q |®; —®;| <2 foreveryi,j=1,...m such that (i,j) ¢ J;
Q@ [, - Du=|Dul(Y).

v

I there exists a calibration ®; for u; in F(J'), then u; is a minimizer in F(J'). Suppose
moreover that there exist Ji, ..., Jn such that BVeonsr(Y) = UIN:1 F(J') then the
solution of Problem (x) is the u; with less energy among the minimizers in F(J"').
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We restrict to the case in which the points are located on the boundary of a convex set,
moreover we consider as possible competitors the BV onstr functions associated to
connected networks without loops.
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A useful remark

We restrict to the case in which the points are located on the boundary of a convex set,
moreover we consider as possible competitors the BV onstr functions associated to

connected networks without loops.
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A useful remark

We restrict to the case in which the points are located on the boundary of a convex set,
moreover we consider as possible competitors the BV onstr functions associated to

connected networks without loops.
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Ezample: the families F(J) for 6 points

Consider 6 points that lie at the vertices of a regular hexagon. Thanks to the previous
remark we find that the competitors can be divides in the following families:

For example in the first picture

0Ai11 NOAi3 =0, A1 NOA 4 =0,
8A,‘+1 N 8A,-+5 = @, 8A,'+2 NOAi4 = @,
0Ai2NOAis =0, A3 NOA;s =0,

with i € {1,2,3,4,5,6} and the indices cyclically identified modulus 6.
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Example: 6 points

In each family

we prove, exhibiting a calibration, that the minimizers are the following:
Pita Pit1

Pit1 Pit1
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Pit1 Ditd

We get
1 = (0,0), o3 = (v/3,1), ¢} = (V3,-1),
q)i = (07 _2)7 d)% = (_\/§> _1)7 ¢é - (_\/§7 1)7
2 _ 2 _ (33 1 2 _ (23 4
¢1_(07O)7 ®; = W’\iﬁ)’ ¢3_ Wv_ﬁ)7
2 _ V3 5 2 _ 43 6 2 _ 3 1
¢4_ (_W’_W) ) q>5_ _W7_\7ﬁ) ) ¢6_ 7 7_77) )
@7 =(0,0), ®3 =(2,0), ®3 = (1,—3),

(
(bg = (07 _2\/§)7 ¢g = (_17 _\/g)a ¢g = (_270) 0
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Rotating the points of S, the network and consequently changing the associate function
by a rotation that fix the origin where the matrix of the transformation is

3v3 1
|:2ﬁ 2ﬁ:|
1 3V3

2V7  2V7
we obtain the calibration

®i° = (0,0), o1’ = (2,0), o1
¢4110 = (_17_\/§)7 (D%O = (_37_\/5)7 ¢é0

(17 _\/g) )
(—2,0).

It is more easy see the analogy between ®? and ¢!, ®°.
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Construction of the covering space Y
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We call £ = ¥; UX, and ¥’ = ¥} U X} admissible cuts if
@ Y;, X! are Lipschitz simple curves starting at p; and ending at pi;1;
e XNY =5.

Let /; be the open and bounded set enclosed in ¥; and ):f and O = R? \ U,";_ll Ii.
We call D =R*\ ¥ and D' =R?\ ¥’
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Construction of the covering space Y of M :=R?\ S
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Construction of the covering space Y of M =R?\ S.

We call D = (U;(D, 1)) U (U (D', ).

Given

(x,4) € (D,Jj) with j € {1,...,m} and (x,j’) € (D',j’) with j' € {m+1,...,2m},
we define the equivalence relation ~ in D as (x,j) ~ (x’,;’) if and only if one of the
following condition holds:

j=J' (mod m), x=x"€0,
j=j—i(modm), x=x"€l,i=1,....m—1.
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Construction of the covering space Y of M :=R?\' S




Construction of the covering space Y of M :=R?\' S




struction of the covering space Y of M :=R?\' S

Alessandra Pluda Calibrations for the Steiner Problem in a Covering Space Setting



Construction of the covering space Y of M =R?\ {p1,...,pm}.

We define Y to be the topological quotient space induced by ~, i.e.

Y::D/N.

We denote by 7 : D — Y the projection induced by the equivalence relation, by 7 the
projection from D to the base space M and by p: Y — M the map that makes the
following diagram commute:

D4%>

N/

Proposition

The map p: Y — M exists and the couple (Y, p) is a covering space of M.

The space Y is a manifold.
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Given a Borel set E C Ys we define

WE) = vl (ENF((D,)))-

Jj=1

Moreover we set L'(Ys) := L*(Ys; R; 1) and analogously, Li,.(Ys) := Li.(Ys; R; ).
We also define the distributional gradient of an function u € L(Ys) := L}(Ys;R; u) as
the linear map

Du(y) = f/y udivip dp

for ¢ € CX(Ys,R?).

Definition

Given u € L*(Ys) we say that u € BV(Ys) if Du is a Radon measure with bounded total
variation.

The total variation of u € L(Ys) denoted with |Du| is defined as

|Dul(E) = p{/ wdivy i p € C(E,B?), [yl < 1}

for every open set E C Ys. Moreover let J, C Y5 be the jump set of u .
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How to compute the total variation of a BVeonstr function in'Y

(D,1)
Q T Q Let E be a Borel set of Yy and
(D,2) u € BV(Ys). Then setting E; =
s E n #((D,j)) and Ey = E N
o #(E\ S,7)) we have |Dul(E) =
Q Q o1 (i | Dv; (u) ) (E))
2m
(D.3) + 2 1 (Vi [ Dy (W) )(Ejr) -
Q Q i
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Regularity

Theorem (Regularity)

Given Umin € BVeonstr(Ys) let us suppose that that it is a minimizer for Problem (%) Then
it holds

H (P(Juin) \ P(Juiy)) = 0 (1)

and the set p(J.,,,) is a finite union of segments meeting at triple junctions with angles
of 120 degrees.
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Regularity of the vector field

Definition (Approzimately regular vector fields on R")

Given A C R", a vectorfield ® : A — R" is approximately regular if it is bounded and for
every Lipschitz hypersurface M in R" there holds

r—0

lim /B,(Xo)rm [(P(x) — D(x0)) - vm(x0)| dx =0 (2)

for H" t-a.e. xo € M N A.

V.

If ® admits traces on M, denoted by ®* and ®~, then condition (??) is equivalent to the
following one:

T (x) - vm(x) = &7 (x) - vm(x) = D(x) - vm(x), (3)
for H'l-a.e. xo € MNA.

Definition (Approximately regular vector fields on Ys)

Given ® : Yy — R?, we say that it is approximately regular in Yz if vj(®) and vy (®) are
approximately regular for every j=1,....mandj' =m+1,...,2m.
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o Calibration for the segment
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o Calibration for the segment
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o Calibration for the segment
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