Calibrations for the Steiner Problem in a Covering Space Setting

Alessandra Pluda joint work with Marcello Carioni

Fakultät für Mathematik, Universität Regensburg

Zürich, April 25th, 2017

Transport problems in Zurich

$Steiner\ problem$

Let $S = \{p_1, \dots, p_m\}$ be a finite set in \mathbb{R}^2 .

Problem (Steiner)

Find a connected set Γ in \mathbb{R}^2 such that $S \subset \Gamma$ and the length of Γ is minimal.

Steiner problem

Let $S = \{p_1, \dots, p_m\}$ be a finite set in \mathbb{R}^2 .

Problem (Steiner)

Find a connected set Γ in \mathbb{R}^2 such that $S \subset \Gamma$ and the length of Γ is minimal.

Idea: Minimizing the total variation of suitable defined BV-functions in a m-sheeted covering space is equivalent to minimize the length of a network that connects the m points of S in the plane.

(Amato-Bellettini-Paolini)

Construction of the covering Y of $M := \mathbb{R}^2 \setminus S$

Construction of the covering space Y of $M := \mathbb{R}^2 \setminus S$

The functions BV_{constr}

We say that a function $u \in BV(Y, \{0,1\})$ is constrained if

$$\sum_{p(y)=x}u(y)=1\,,$$

for every $x \in M = \mathbb{R}^2 \setminus S$.

Moreover we add a suitable boundary condition.

The functions BV_{constr}

We say that a function $u \in BV(Y, \{0,1\})$ is constrained if

$$\sum_{p(y)=x}u(y)=1,$$

for every $x \in M = \mathbb{R}^2 \setminus S$.

Moreover we add a suitable boundary condition.

Proposition

Given $u \in BV_{constr}(Y)$ there hold:

•
$$|Du|(Y) = 2\mathcal{H}^1(p(J_u)),$$

The functions BV_{constr}

We say that a function $u \in BV(Y, \{0, 1\})$ is constrained if

$$\sum_{p(y)=x}u(y)=1,$$

for every $x \in M = \mathbb{R}^2 \setminus S$.

Moreover we add a suitable boundary condition.

Proposition

Given $u \in BV_{constr}(Y)$ there hold:

- $|Du|(Y) = 2\mathcal{H}^1(p(J_u)),$
- the set S is contained in a connected component of $\overline{p(J_u)}$.

Minimization Problem

Problem (*)

Find a function $u \in BV_{constr}(Y)$ such that its total variation is minimal.

Minimization Problem

Problem (*)

Find a function $u \in BV_{constr}(Y)$ such that its total variation is minimal.

$\underline{Theorem}$

Problem (*) and the Steiner problem are equivalent.

To be more precise the solution of the Steiner problem is the connected network $p(J_{u_{\min}})$, where $u_{\min} \in BV_{constr}(Y)$ is a solution of Problem (*).

Calibration on coverings

Given a vector field $\Phi: Y \to \mathbb{R}^2$, we denote with $\Phi_i: M \to \mathbb{R}^2$ the pushforward (according to the projection $p: Y \to M$) of the restriction of Φ on the *i*-th sheet of the covering Y.

Definition

Let $u \in BV_{\mathrm{constr}}(Y)$, a calibration for u is a vector field $\Phi: Y \to \mathbb{R}^2$ such that

- $0 div \Phi = 0;$
- $|\Phi_i \Phi_j| \le 2$ for every $i, j = 1, \dots m$;

Calibration on coverings

Given a vector field $\Phi: Y \to \mathbb{R}^2$, we denote with $\Phi_i: M \to \mathbb{R}^2$ the pushforward (according to the projection $p: Y \to M$) of the restriction of Φ on the *i*-th sheet of the covering Y.

Definition

Let $u \in BV_{\mathrm{constr}}(Y)$, a calibration for u is a vector field $\Phi: Y \to \mathbb{R}^2$ such that

- $0 div \Phi = 0;$
- $|\Phi_i \Phi_j| \le 2$ for every $i, j = 1, \dots m$;

Theorem

If $\Phi: Y \to \mathbb{R}^2$ is a calibration for $u \in BV_{\mathrm{constr}}(Y)$, then u is a minimizer for Problem (*).

Example: calibration for 3 points

Example: calibration for 4 points

Example: calibration for 4 points

Calibration implies minimality

Consider a candidate minimizer $u \in BV_{\text{constr}}(Y)$ and a competitor $v \in BV_{\text{constr}}(Y)$.

We have

$$|Du|(Y) \stackrel{(3)}{=} \int_{Y} \Phi \cdot Du \stackrel{(1)}{=} \int_{Y} \Phi \cdot Dv$$

$$= \sum_{j=1}^{m} \int_{D} \Phi_{j} \cdot Dv_{j} = \sum_{j=1}^{m} \int_{J_{v_{j}}} \Phi_{j}(v_{j}^{+} - v_{j}^{-}) \cdot \nu \, d\mathcal{H}^{1}$$

$$\leq \int_{p(J_{v})} \left| \sum_{j=1}^{m} \phi_{j}(v_{j}^{+} - v_{j}^{-}) \right| \, d\mathcal{H}^{1} \stackrel{(2)}{\leq} 2\mathcal{H}^{1}(p(J_{v}))$$

$$= |Dv|(Y)$$

Calibration implies minimality

Consider a candidate minimizer $u \in BV_{\text{constr}}(Y)$ and a competitor $v \in BV_{\text{constr}}(Y)$.

We have

$$|Du|(Y) \stackrel{(3)}{=} \int_{Y} \Phi \cdot Du \stackrel{(1)}{=} \int_{Y} \Phi \cdot Dv$$

$$= \sum_{j=1}^{m} \int_{D} \Phi_{j} \cdot Dv_{j} = \sum_{j=1}^{m} \int_{J_{v_{j}}} \Phi_{j}(v_{j}^{+} - v_{j}^{-}) \cdot \nu d\mathcal{H}^{1}$$

$$\leq \int_{p(J_{v})} \left| \sum_{j=1}^{m} \phi_{j}(v_{j}^{+} - v_{j}^{-}) \right| d\mathcal{H}^{1} \stackrel{(2)}{\leq} 2\mathcal{H}^{1}(p(J_{v}))$$

$$= |Dv|(Y)$$

The last inequality holds because

$$(v_j^+ - v_j^-)(x) = \left\{ egin{array}{ll} +1 & ext{ for } j = j_1 \ -1 & ext{ for } j = j_2 \ 0 & ext{ for all } j
eq j_1, j_2 \end{array}
ight.$$

Calibration implies minimality

Consider a candidate minimizer $u \in BV_{\text{constr}}(Y)$ and a competitor $v \in BV_{\text{constr}}(Y)$.

We have

$$|Du|(Y) \stackrel{(3)}{=} \int_{Y} \Phi \cdot Du \stackrel{(1)}{=} \int_{Y} \Phi \cdot Dv$$

$$= \sum_{j=1}^{m} \int_{D} \Phi_{j} \cdot Dv_{j} = \sum_{j=1}^{m} \int_{J_{v_{j}}} \Phi_{j}(v_{j}^{+} - v_{j}^{-}) \cdot \nu \, d\mathcal{H}^{1}$$

$$\leq \int_{p(J_{v})} \left| \sum_{j=1}^{m} \phi_{j}(v_{j}^{+} - v_{j}^{-}) \right| \, d\mathcal{H}^{1} \stackrel{(2)}{\leq} 2\mathcal{H}^{1}(p(J_{v}))$$

$$= |Dv|(Y)$$

The last inequality holds because

$$(v_j^+ - v_j^-)(x) = \left\{ egin{array}{ll} +1 & ext{for } j = j_1 \ -1 & ext{for } j = j_2 \ 0 & ext{for all } j
eq j_1, j_2 \end{array}
ight.$$

Moreover fixed a competitor $v \in BV_{constr}(Y)$, property (2) is necessary only for (i,j) such that

$$\mathcal{H}^1(J_{\nu_i}\cap J_{\nu_i})>0.$$

Calibrations in $\mathcal{F}(\mathcal{J})$

Definition

Let
$$\mathcal{J}\subset\{1,\ldots,m\}\times\{1,\ldots,m\},$$
 we define

$$\mathcal{F}(\mathcal{J}) = \{u \in BV_{constr}(Y) : \mathcal{H}^1(J_{u_i} \cap J_{u_j}) = 0, \text{ for every } (i,j) \in \mathcal{J}\}.$$

Definition

A calibration for u in $\mathcal{F}(\mathcal{J})$ is a vector field $\Phi: Y \to \mathbb{R}^2$ such that

- $0 div \Phi = 0;$
- $|\Phi_i \Phi_j| \le 2 \text{ for every } i, j = 1, \dots \text{m such that } (i, j) \notin \mathcal{J};$

Calibrations in $\mathcal{F}(\mathcal{J})$

Definition

Let
$$\mathcal{J} \subset \{1, \dots, m\} \times \{1, \dots, m\}$$
, we define

$$\mathcal{F}(\mathcal{J}) = \{u \in BV_{constr}(Y) : \mathcal{H}^1(J_{u_i} \cap J_{u_j}) = 0, \text{ for every } (i,j) \in \mathcal{J}\}.$$

Definition

A calibration for u in $\mathcal{F}(\mathcal{J})$ is a vector field $\Phi: Y \to \mathbb{R}^2$ such that

- \bigcirc div $\Phi = 0$;
- ② $|\Phi_i \Phi_j| \le 2$ for every i, j = 1, ... m such that $(i, j) \notin \mathcal{J}$;

If there exists a calibration Φ_i for u_i in $\mathcal{F}(\mathcal{J}^i)$, then u_i is a minimizer in $\mathcal{F}(\mathcal{J}^i)$. Suppose moreover that there exist $\mathcal{J}_1,\ldots,\mathcal{J}_N$ such that $BV_{constr}(Y)=\bigcup_{i=1}^N \mathcal{F}(\mathcal{J}^i)$ then the solution of Problem (*) is the u_i with less energy among the minimizers in $\mathcal{F}(\mathcal{J}^i)$.

Example: the families $\mathcal{F}(\mathcal{J})$ for 6 points

Consider 6 points that lie at the vertices of a regular hexagon. Thanks to the previous remark we find that the competitors can be divides in the following families:

For example in the first picture

$$\partial A_{i+1} \cap \partial A_{i+3} = \emptyset, \ \partial A_{i+1} \cap \partial A_{i+4} = \emptyset, \\ \partial A_{i+1} \cap \partial A_{i+5} = \emptyset, \ \partial A_{i+2} \cap \partial A_{i+4} = \emptyset, \\ \partial A_{i+2} \cap \partial A_{i+5} = \emptyset, \ \partial A_{i+3} \cap \partial A_{i+5} = \emptyset.$$

with $i \in \{1, 2, 3, 4, 5, 6\}$ and the indices cyclically identified modulus 6.

Example: 6 points

In each family

we prove, exhibiting a calibration, that the minimizers are the following:

We get

$$\begin{array}{lll} \Phi_1^1 = (0,0)\,, & \Phi_2^1 = (\sqrt{3},1)\,, & \Phi_6^1 = (\sqrt{3},-1)\,, \\ \Phi_4^1 = (0,-2)\,, & \Phi_5^1 = (-\sqrt{3},-1)\,, & \Phi_6^1 = (-\sqrt{3},1)\,, \\ \\ \Phi_1^2 = (0,0)\,, & \Phi_2^2 = \left(\frac{3\sqrt{3}}{\sqrt{7}},\frac{1}{\sqrt{7}}\right)\,, & \Phi_3^2 = \left(\frac{2\sqrt{3}}{\sqrt{7}},-\frac{4}{\sqrt{7}}\right)\,, \\ \Phi_4^2 = \left(-\frac{\sqrt{3}}{\sqrt{7}},-\frac{5}{\sqrt{7}}\right)\,, & \Phi_5^2 = \left(-\frac{4\sqrt{3}}{\sqrt{7}},-\frac{6}{\sqrt{7}}\right)\,, & \Phi_6^2 = \left(-\frac{3\sqrt{3}}{7},-\frac{1}{\sqrt{7}}\right)\,, \\ \Phi_1^3 = (0,0)\,, & \Phi_2^3 = (2,0)\,, & \Phi_3^3 = (1,-\sqrt{3})\,, \\ \Phi_4^3 = (0,-2\sqrt{3})\,, & \Phi_5^3 = (-1,-\sqrt{3})\,, & \Phi_6^3 = (-2,0)\,. \end{array}$$

Rotating the points of S, the network and consequently changing the associate function by a rotation that fix the origin where the matrix of the transformation is

$$\begin{bmatrix} \frac{3\sqrt{3}}{2\sqrt{7}} & -\frac{1}{2\sqrt{7}} \\ \frac{1}{2\sqrt{7}} & \frac{3\sqrt{3}}{2\sqrt{7}} \end{bmatrix}$$

we obtain the calibration

$$\begin{array}{ll} \widetilde{\Phi}_1^{10} = (0,0)\,, & \widetilde{\Phi}_2^{10} = (2,0)\,, & \widetilde{\Phi}_3^{10} = (1,-\sqrt{3})\,, \\ \widetilde{\Phi}_4^{10} = (-1,-\sqrt{3})\,, & \widetilde{\Phi}_5^{10} = (-3,-\sqrt{3})\,, & \widetilde{\Phi}_6^{10} = (-2,0)\,. \end{array}$$

It is more easy see the analogy between $\widetilde{\Phi}^2$ and Φ^1 , Φ^3 .

Construction of the covering space Y of $M := \mathbb{R}^2 \setminus S$

We call $\Sigma = \Sigma_1 \cup \Sigma_2$ and $\Sigma' = \Sigma_1' \cup \Sigma_2'$ admissible cuts if

- Σ_i , Σ_i' are Lipschitz simple curves starting at p_i and ending at p_{i+1} ;
- $\Sigma \cap \Sigma' = S$.

Let I_i be the open and bounded set enclosed in Σ_i and Σ_i' and $O = \mathbb{R}^2 \setminus \bigcup_{i=1}^{m-1} \overline{I_i}$. We call $D = \mathbb{R}^2 \setminus \Sigma$ and $D' = \mathbb{R}^2 \setminus \Sigma'$.

Construction of the covering space Y of $M := \mathbb{R}^2 \setminus S$

Construction of the covering space Y of $M = \mathbb{R}^2 \setminus S$.

We call
$$\mathbf{D} := (\cup_j(D,j)) \bigcup (\cup_{j'}(D',j')).$$

Given

 $(x,j) \in (D,j)$ with $j \in \{1,\ldots,m\}$ and $(x',j') \in (D',j')$ with $j' \in \{m+1,\ldots,2m\}$, we define the equivalence relation \sim in \mathbf{D} as $(x,j) \sim (x',j')$ if and only if one of the following condition holds:

$$\left\{ \begin{array}{ll} j \equiv j' \; (\text{mod } m), & x = x' \in O, \\ j \equiv j' - i \; (\text{mod } m), & x = x' \in I_i, \; i = 1, \dots, m - 1. \end{array} \right.$$

Construction of the covering space Y of $M := \mathbb{R}^2 \setminus S$

Construction of the covering space Y of $M := \mathbb{R}^2 \setminus S$

Construction of the covering space Y of $M := \mathbb{R}^2 \setminus S$

Construction of the covering space Y of $M = \mathbb{R}^2 \setminus \{p_1, \ldots, p_m\}$.

We define Y to be the topological quotient space induced by \sim , i.e.

$$Y:=\mathbf{D}\Big/\sim$$
.

We denote by $\tilde{\pi}: \mathbf{D} \to Y$ the projection induced by the equivalence relation, by π the projection from \mathbf{D} to the base space M and by $p: Y \to M$ the map that makes the following diagram commute:

Proposition

The map $p: Y \to M$ exists and the couple (Y, p) is a covering space of M.

The space Y is a manifold.

Given a Borel set $E \subset Y_{\Sigma}$ we define

$$\mu(\mathsf{E}) := \sum_{j=1}^m \psi_{j\sharp} \mathcal{L}^2(\mathsf{E} \cap \tilde{\pi}((\mathsf{D},j))) \,.$$

Moreover we set $L^1(Y_{\Sigma}) := L^1(Y_{\Sigma}; \mathbb{R}; \mu)$ and analogously, $L^1_{loc}(Y_{\Sigma}) := L^1_{loc}(Y_{\Sigma}; \mathbb{R}; \mu)$. We also define the distributional gradient of an function $u \in L^1(Y_{\Sigma}) := L^1(Y_{\Sigma}; \mathbb{R}; \mu)$ as the linear map

$$Du(\psi) = -\int_{Y_{\Sigma}} u \, div \psi \, d\mu$$

for $\psi \in C^1_c(Y_{\Sigma}, \mathbb{R}^2)$.

Definition

Given $u \in L^1(Y_{\Sigma})$ we say that $u \in BV(Y_{\Sigma})$ if Du is a Radon measure with bounded total variation.

The total variation of $u \in L^1(Y_{\Sigma})$ denoted with |Du| is defined as

$$|\mathit{Du}|(\mathcal{E}) = \sup \left\{ \int_{\mathcal{E}} u \, \mathit{div}\psi \, d\mu : \psi \in \mathit{C}^1_c(\mathcal{E}, \mathbb{R}^2), \|\psi\| \leq 1
ight\}$$

for every open set $E \subset Y_{\Sigma}$. Moreover let $J_u \subset Y_{\Sigma}$ be the jump set of u.

How to compute the total variation of a BV_{constr} function in Y

Let E be a Borel set of Y_{Σ} and $u \in BV(Y_{\Sigma})$. Then setting $E_j := E \cap \tilde{\pi}((D,j))$ and $E_{j'} := E \cap \tilde{\pi}((\Sigma \setminus S,j'))$ we have $|Du|(E) = \sum_{j=1}^{m} (\psi_{j\#}|Dv_j(u)|)(E_j) + \sum_{i'=m+1}^{2m} (\psi_{j\#}|Dv_{j'}(u)|)(E_{j'})$.

Regularity

Theorem (Regularity)

Given $u_{min} \in BV_{constr}(Y_{\Sigma})$ let us suppose that that it is a minimizer for Problem (*) Then it holds

$$\mathcal{H}^{1}(\overline{\rho(J_{u_{min}})} \setminus \rho(J_{u_{min}})) = 0 \tag{1}$$

and the set $\overline{p(J_{u_{min}})}$ is a finite union of segments meeting at triple junctions with angles of 120 degrees.

Canonic construction of a function from a network

(D', 5)

(D', 6)

(D',7)

(D', 8)

Regularity of the vector field

Definition (Approximately regular vector fields on \mathbb{R}^n)

Given $A \subset \mathbb{R}^n$, a vectorfield $\Phi : A \to \mathbb{R}^n$ is approximately regular if it is bounded and for every Lipschitz hypersurface M in \mathbb{R}^n there holds

$$\lim_{r \to 0} \int_{B_r(x_0) \cap A} |(\Phi(x) - \Phi(x_0)) \cdot \nu_M(x_0)| \, dx = 0 \tag{2}$$

for \mathcal{H}^{n-1} -a.e. $x_0 \in M \cap A$.

If Φ admits traces on M, denoted by Φ^+ and Φ^- , then condition (??) is equivalent to the following one:

$$\Phi^{+}(x) \cdot \nu_{M}(x) = \Phi^{-}(x) \cdot \nu_{M}(x) = \Phi(x) \cdot \nu_{M}(x), \tag{3}$$

for \mathcal{H}^{n-1} -a.e. $x_0 \in M \cap A$.

Definition (Approximately regular vector fields on Y_{Σ})

Given $\Phi: Y_{\Sigma} \to \mathbb{R}^2$, we say that it is approximately regular in Y_{Σ} if $v_j(\Phi)$ and $v_{j'}(\Phi)$ are approximately regular for every $j=1,\ldots,m$ and $j'=m+1,\ldots,2m$.

Calibration for the segment

Calibration for the segment

Calibration for the segment

