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O

Result

Regularity/geometric interpretation of the level sets of p-harmonic functions.

o link monotonicity formulas along the inverse mean curvature flow to monotonicity formulas in
(non-)linear potential theory,

o justify formal computations,

o geometric inequalities.

Setting
(M™,g) complete noncompact Riemannian n-manifold, n > 3.
o Setting I: nonnegative Ricci curvature Ric > 0;

o Setting 2: Riemannian 3-manifolds, nonnegative scalar curvature R > 0.

AIM AND SETTING



IMCF and harmonic functions

Formal relations

Limitations of the smooth setting

GMT meets PDE




1 IMCF and harmonic functions



INVERSE MEAN CURVATURE FLOW ( N ’

Definition - Inverse Mean Curvature Flow

Let N be an hypersurface in (M™,g) a n-Riemannian smooth manifold, and F,: N — M a smooth
immersion. A classical solution to the Inverse Mean Curvature flow is a family of smooth immersions
F:[0,T)x N — M satisfying
. _ v(F(t,p))
(9,,F(P«,1€? = HEED) (IMCF)
F(0,p) = Fy(p)

where H is the mean curvature and v the outward normal vector.

let N=S™"!, M=R", Fo(N)=S%*. Then, IMCF
reduces to the following ODE

R/(t) = 711 R(t)
R(0) = Ry

1
thus, B(t) = Roe ™7, = >
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MONOTONE QUANTITIES - |

Setting 1. (M, g) complete, noncompact Riemannian 3-manifold with nonnegative Ricci curvature
Ric >0, 3 hypersurface in M.
Let 32, be the IMCF from . We compute the evolution of the areq, the volume and the mean curvature:

d d 1
amt‘*‘zt\v EVOMEJ*/E ﬁdiﬁ

d . 1\ b Ricy,v)
=g -

Then, the evolution of the Willmore functional reads

d
E/EtH%ia:/Zt—2HA(1/141)_2HA(1/H —2Ih?- 2Ric(v, v |+ H2Ho
o2 m2=2[i]> |VTH\2 e
= —2 —2|h 2Ric(v,r)do <0.
e R

P

where we used 0= [div(HV(1/H))do = [HA(1/H)—|VTH|*/H2 do.

]Z H2do is monotone non-increasing.
t
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MONOTONE QUANTITIES - II

Setting 2: (M, g) complete, noncompact Riemannian 3-manifold with nonnegative scalar curvature
R >0, X hypersurface in M.

Consider the Hawking mass

1= 1 2
)im 1—— H do ).
ma(Z)=y/ 16, 167 7

Let 3, be the IMCF from 3. We compute

d 1 d
amH(Et)*iw \/|2\ 167r—/ H2do | — /%] E/ H2do
(16m) =, 5,
> e THP e
124 871'7/ —da+/ oIV Hl +2[8* + 2Ric(v,v)do
1677 167 s, 2 s, H2

B 2 |2
2Ric(y,w)=H[2-R-RTR[" 1 [15] 87r—/ RTdo+/ || +R+LT "o >0
167 V 167 s, s, H? T

Ny B—
>0 Gauss-Bonnet

m g (3,) iIs monotone non-decreasing.



)

LEVEL SET FORMULATION

Assume that the flow is given by the level set of a function w: M\Q — R such that {z : u(z) =t} = F(t

Then, for pe N we have

8. 9 v(F(t,p)) 1 Vu
= at_ 7U(F( 7p)) = <Vu58tF(t7p)> <V’LL, H(F( ))> = H(F(t,p)) <vu7 m>$

hence,

H=|Vul].

Keeping in mind that H =div(%> = A, u, we derive the level set formulation of IMCF.

Level set formulation

Given Q C M closed and bounded, we define w; as the solution to

Ajw; = [Vw,| on M\,
wy =0 on 9012,
wy — +00 as d(z,Q) — +oo,

7')’
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HARMONIC FUNCTIONS

Given Q C M closed and bounded, we define ug as the solution to

Auy =0 on M\,
Uy = 1 on 012,
Uy — 0 as d(z,2) — +oo,

If a solution exists and € is a regular domain, then u, € C°°(M\ 2) is unique and it is smooth till the
boundary of Q. By Sard theorem, the set of critical values of w, has zero Lebesgue measure.
Notice that wo = —log(us) solves

Awy = |Vwsy|? on M\Q,
wy =0 on 9012,
Woy — +00 as d(z,Q) — +oo,



DIRICHLET ENERGY

Suitable variants of the Dirichlet Energy
Gy = / IVul2do
>
are monotone on the level set of harmonic functions.
Non-exhaustive list of applications:

o Uniqueness of smooth tangent cones at infinity in Ricci-flat manifolds [Colding 12 - Acta
Math.],[Colding, Minicozzi ‘14 - Invent. Math.]

o Riemannian positive mass theorem [Agostiniani, Mazzieri, Oronzio ‘24 - CMP], [Cederbaum,
Lebén Quirés, Meco "25]

o Willmore inequality [Agostiniani, Fogagnolo, Mazzieri ‘20 - Invent. Math.] [Cederbaum, Miehe 25 -
Trans. Am. Math. Soc.]

o Characterization of Ricci pinched 3-manifolds [Benatti, Mantegazza, Oronzio, P—, 25 - J. Geom.
An.]


https://doi.org/10.1007/s11511-012-0086-2
https://doi.org/10.1007/s11511-012-0086-2
https://doi.org/10.1007/s00222-013-0474-z
https://doi.org/10.48550/arXiv.2108.08402
https://doi.org/10.1090/tran/9445
https://doi.org/10.1090/tran/9445
https://doi.org/10.1007/s00222-020-00985-4
https://doi.org/10.1090/tran/9445
https://doi.org/10.1090/tran/9445
https://doi.org/10.1007/s12220-025-02095-0
https://doi.org/10.1007/s12220-025-02095-0

2 Formal relations
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IMCF VS HARMONIC FUCTIONS

[ IMCF ] Harmonic functions ]
0, F(p.t) — VD) Auy =0 on M\Q,
tFO’ H(F(2,p)) uy = 1 on a9,
0,p) = Folp) uy — 0 as d(z,Q) — +oo,

Level set formulation

Ajw; = |[Vw
wy, =0
wy — +00

Willmore energy F (

Hawking mass m;

1l

()=

Reformulation

Change of variable

on M\Q, Awy = |Vawy|? on M \Q,
on 99, wy = 0 on 912,
as d(z,Q) — +oo, Wy — +00 as d(z,Q) — +oo,

Monotone quantities

Jasz H2do

5 (114 [ H?do)

Dirichlet energy G, (t) = fz [Vw,|?do
t
167 ( 167
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P-IMCF

Definition - p-IMCF

Let p€[1,2]. Given Q C M closed and bounded, we define w,, as the solution to

Ay w, = [Vw,|P on M\,
w, = 0 on 852, (p-IMCF)
w,, — +00 as d(z,Q) — +oo,

where A, f =div(|V f|? 2V f).
We denote QP = {w,, <t}.

o p=2:linear potential theory, u, =exp(—wsy) is harmonic.
o pe(1,2): nonlinear potential theory (NPT), u,, = exp(—w,, /(p—1)) is p-harmonic.
o p=1: weak inverse mean curvature flow [Huisken, lmanen ‘01 - JDG].

Proposition - [Moser 07 - JEMS], [Kotschwar, Ni ‘09 - Ann. Sci. Ec. Norm. Supér.]

If w,, exists for every p € [1,2], then w,, — w; locally uniformly as p—17.


https://doi.org/10.4310/jdg/1090349447
https://doi.org/10.4171/JEMS/73
https://doi.org/10.24033/asens.2089

(10)

We want to approximate monotonic quantities along the IMCF with monotonic quantities in NPT.
Step 1: Approximation of the Willmore energy

Construction of F , proxy for , = fEtHQda.

Formally,
o 7, should coincide with 77 in the limit p — 1.

o 7, should coincide with 5 in the limit p— 1+

o ¥, should be monotone along A, w,, = |Vw,|".

APPROXIMATION



PROXY FOR 7,

Consider os[model case M:R3]ond Q with radial symmetry. Call w,, and w; the solutions to
Ajw, =[Vw,|” and Ajw; =[Vw, |, respectively.

Then, w,, = (3—p)log|z|, wy = 2log|z| and the relation g2;w, =w, is satisfied. Hence

2
§|pr|= |Vw,|=H.

The term (H—% \pr\)2 is a sort of deficit from the model case of IMCF in R3.

Possible candidates are
F (t):/ H2—<H772 |Vw
v a9, 3—p P

>2d and () / 4[pr|2
o = _—
P IoN (37}7)2
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F,ANDG,

From direct computation we have

H
3"1(15):—2/ |VH ‘ +‘h‘ +Ric(v,v)do,
29,

2
4 IVTIVw,|l”™ .2 3—p 2 2
Fl (== —— P+ |h|” +Ric(v,v)+ = <H7— Vw ) do
p() 3—p o \Vw |2 | | ( ) 2(p—1) 3_77‘ p‘
4 \Vw \ |Vw, |H 1
GL(t)=— ——L —do=—-(G,(t)=F ,(t
p( ) pfl, 00, (3 p) 37p pfl( p( ) p( >)

If Ric >0, then F,(t) <0. Moreover,

1t g /_ -l Vg e p—T ,
(e T gp(t>) —e P 1 (9;,(75) T 19 ()) 1 Fp(t)>0.
If, in addiction, AVR(g) > 0, this implies G, (t) <0, thus

0<G,(t) < F () < F1 (1)

F ,, is monotone non-increasing.
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P-HAWKING MASS

Step 2: “p-version” of the Hawking mass m () = /=& (1- 5= JH do). We need to
o approximate the area term, maintaining its scaling;
o maintain the exponetial growth along the flow.

Definition - Normalized p-capacity

Let © be a closed, bounded set in M. The normalized p-capacity of Q is defined as

1 /p—1\P!
cp(aﬁ):—inf{h(gz) /M\QV¢|Pd,u:¢€(ﬁc°°(M),¢>lonQ}

It holds cp(aQt):ef (])(OQ) and CP(GQ):/ <7 do.
o\ 3-P

As p— 1" we have that ¢,,(3) tends to [%*|, where %* is the outward minimizing hull of [Fogagnolo,
Mazzieri ‘22 - JFA].

Natural choice:


https://doi.org/10.1016/j.jfa.2022.109638
https://doi.org/10.1016/j.jfa.2022.109638

GENERAL SETTING

Finally, we would like to “summarize” setting 1 and setting 2 in the same functional, that then can be

“specialized” both to Willmore-type energies and Hawking-type masses.

[V, [*tP2 {Hf (L_l - é) |pr\] do

=i
T (09,) = ¢, (09,7 / =

v Oy

t
+/ cp(aﬁs)ﬁ_lf |pr‘a+p73Ric(1/,V)d0'ds.
0 a9,

With this correction term, we have a monotone functional in (M,g) noncompact, complete,
Riemannian manifold of dimension n > 3, without restrictions nor on Ric neither on R of M.



EXPECTATIONS

[ p-iMcF ] [ MCF

Apw, = [Vw,|? on M\, Ajw; = [Vw,| on M\Q,
w, =0 on 02, wy =0 on 02,
wy, — +00 as d(z,Q) = +oo, wy — +00 as d(z,Q) = +oo,

As p — 17, solutions converge to solutions and level sets to level sets.

2 2 .
2

H —(Hf—g )‘pro do .?1(t):/ H2do
89, -

4 \VT|prH

———— |h| +Ric(v,v) Ty — ‘V H|
3—p 29, ‘V’LU | ?l(t) 2 5, 2 +|h| +Ric(v,v)do

2
>da

F ,(t) approximate 7, (¢), also at the level of their derivatives.

= <H ‘Vw
2(p—1) 3—p




3 Limitations of the smooth setting
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SINGULARITIES OF IMCF

Theorem - [Gerhardt ‘90 - JDG],[Urbas ‘90 - Math.Z.]

Any compact, star-shaped initial surface remains star-shaped and smooth along the flow and be-

comes an expanding round sphere as t — +oo.

The classical IMCF could develop singularities.
Example:

The level set formulation A;w; = |Vw,|
o is a degenerate elliptic PDE,

o is not the Euler-Lagrange equation of a

functional.

Existence and regularity theory for weak IMCF
is delicate [Huisken, llImanen ‘01 - JDG].



https://doi.org/10.4310/jdg/1090349447

KNOWN REGULARITY

e R

Regularity

w, € ¢1# and smooth on {Vw, #0
P s {vw, #0} w, is Lipschitz
[Vw,|le WH

Regularity of level sets

Q, is strictly outward minimizing
|Vw,|#0 almost everywhere on 9Q, for a.e.

. - 09, admits a weak mean curvature H >0
99, is smooth away from the critical set.

99, is ¢€1P out of a set of dimension n—8.

Goal: Interpret the level sets as (weak) surfaces, regular enough to get a notion of mean
curvature, second fundamental form, and Gauss curvature.



4 GMT meets PDE
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MONOTONICITIES IN NPT — INIMCF

- 2
3./ _ 4 ‘V |vaH |}‘2 Ri . . .

p(t) =3, TV +Ihl +Ric(v,v) o Goal1: give meaning to all the terms in

v the formal derivative.
= ( 2 ) d
2(p—1) 3—p‘ wp|) do o Goal 2: (strong enough) convergence

, ‘VT|vaH2 i result.

@)= —2/ —_— +|8)” +Ric(v,v)do
[Vw,|

Theorem - [Benatti, P—, Pozzetta '24]

For every p € [1,2], almost every aﬂy’) is a curvature varifold.
Moreover,

o BQ(tp) converges (up to subsequence) to aﬂf) in the sense of curvature varifolds for a.e. ¢ > 0.

o w, —w; in Wk for g < +oo.


https://doi.org/10.48550/arXiv.2411.06462

IDEA OF THE PROOF

Step 1. almost every 8(2&”) is a curvature varifold.
e-regularization and a priori bounds. This gives meaning to all terms in

2

4 VT IVw, || -2 3—p 2 2

F ()= — / P__ +|h|” +Ric(v,v +7(H—— Vw ) do.
»() B=p) Joa®  |[Vuw,|? bl () 2(p—1) 3*p| d

Step 2. BQ(f) converges to aﬂil) in the sense of curvature varifolds for a.e. ¢ > 0.

—17 (

1109?27 109 for almost every t.

1. + 2. = convergence in the sense of varifolds.
2.+ bound on [[i|° = 3,

I. + 2. + 3. = convergence as curvature varifolds.

p—1t
2. / ([Vwy|—H)?do —— 0.
aqP)
3. |h|?de is bounded.
Clexd
Step 3. Gradient convergence.

p—17T

Combine: o Vw, —— Vw,; weakly in L4

p—1t
o [lw — wil
loc

plag,

T
q V12
o hm/ / v -V |"dodt =0
p—1t 0 BQ‘tp)
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WEAK GAUSS-BONNET

For p € (1,2), we do not have enough regularity to define an Euler characteristic that encompass the
topological properties of the level sets.
A weak induced scalar curvature can be defined through an integral version of the Gauss equation:

/RTda:/ R —2Ric(v,v)+H?—|h|*do
I3 3

Theorem - [Benatti P—, Pozzetta '24]

Let (M, g) be a complete, noncompact 3-dimensional Riemannian manifold. Let p € (1,2) and w,, be
the solution to A, w,, =[Vw, [?. Then, for aimost every ¢ € [0,+o0) it holds

RTdo € 87Z.
Joql


https://doi.org/10.48550/arXiv.2411.06462
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