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Result

Regularity/geometric interpretation of the level sets of 𝑝-harmonic functions.

Aims

∘ link monotonicity formulas along the inverse mean curvature flow to monotonicity formulas in

(non-)linear potential theory,

∘ justify formal computations,

∘ geometric inequalities.

Setting

(𝑀𝑛,𝑔) complete noncompact Riemannian 𝑛-manifold, 𝑛 ≥ 3.
∘ Setting 1: nonnegative Ricci curvature Ric ≥ 0;

∘ Setting 2: Riemannian 3-manifolds, nonnegative scalar curvature R ≥ 0.
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Definition Inverse Mean Curvature Flow

Let 𝑁 be an hypersurface in (𝑀𝑛,𝑔) a 𝑛-Riemannian smooth manifold, and 𝐹0 ∶ 𝑁 → 𝑀 a smooth

immersion. A classical solution to the Inverse Mean Curvature flow is a family of smooth immersions

𝐹 ∶ [0,𝑇 )×𝑁 → 𝑀 satisfying

{
𝜕𝑡𝐹(𝑝,𝑡) = 𝜈(𝐹(𝑡,𝑝))

H(𝐹(𝑡,𝑝))

𝐹(0,𝑝) = 𝐹0(𝑝)
(IMCF)

where H is the mean curvature and 𝜈 the outward normal vector.

Expanding spheres

Let 𝑁 = S𝑛−1 , 𝑀 =R𝑛 , 𝐹0(𝑁) = S𝑛−1
𝑅0

. Then, IMCF

reduces to the following ODE

{
𝑅′(𝑡) = 1

𝑛−1 𝑅(𝑡)
𝑅(0) = 𝑅0

thus, 𝑅(𝑡) = 𝑅0e
1

(𝑛−1)𝑡 .



M
O
N
O
T
O
N
E
Q
U
A
N
T
IT
IE
S
-
I

3

Setting 1: (𝑀,𝑔) complete, noncompact Riemannian 3-manifold with nonnegative Ricci curvature

Ric ≥ 0, Σ hypersurface in 𝑀.

Let Σ𝑡 be the IMCF from Σ. We compute the evolution of the area, the volume and the mean curvature:

d
d𝑡

|Σ𝑡| = |Σ𝑡|, d
d𝑡

Vol(Σ𝑡) =
ˆ

Σ𝑡

1
H

d𝜎,

d
d𝑡

H = −Δ( 1
H

)− |h|2

H
− Ric(𝜈,𝜈)

H
.

Then, the evolution of the Willmore functional reads

d
d𝑡

ˆ
Σ𝑡

H2 d𝜎 =
ˆ

Σ𝑡

−2HΔ(1/H)−2HΔ(1/H)−2|h|2 −2Ric(𝜈,𝜈)+H2 d𝜎

2|h|2−H2=2∣ ̊h∣2

=
ˆ

Σ𝑡

−2 |∇⊤H|2

H2 −2∣h̊∣2 −2Ric(𝜈,𝜈)⏟⏟⏟⏟⏟
≥0

d𝜎 ≤ 0.

where we used 0 =
´

div(H∇(1/H))d𝜎 =
´

HΔ(1/H)−|∇⊤H|2/H2 d𝜎.
´

Σ𝑡
H2 d𝜎 is monotone non-increasing.



M
O
N
O
T
O
N
E
Q
U
A
N
T
IT
IE
S
-
II

4

Setting 2: (𝑀,𝑔) complete, noncompact Riemannian 3-manifold with nonnegative scalar curvature

R ≥ 0, Σ hypersurface in 𝑀.

Consider the Hawking mass

𝔪𝐻(Σ) ≔ √ |Σ|
16𝜋

(1− 1
16𝜋

ˆ
Σ

H2 d𝜎).

Let Σ𝑡 be the IMCF from Σ. We compute

d
d𝑡

𝔪𝐻(Σ𝑡) = 1
(16𝜋)3/2 [ d

d𝑡
√|Σ𝑡|(16𝜋−

ˆ
Σ𝑡

H2 d𝜎)−√|Σ𝑡|( d
d𝑡

ˆ
Σ𝑡

H2 d𝜎)]

= 1
16𝜋

√ |Σ𝑡|
16𝜋

(8𝜋−
ˆ

Σ𝑡

H2

2
d𝜎+

ˆ
Σ𝑡

2 |∇⊤H|2

H2 +2∣ ̊h∣2 +2Ric(𝜈,𝜈)d𝜎)

2Ric(𝜈,𝜈)−H2/2=R−R⊤−∣ ̊h∣2

= 1
16𝜋

√ |Σ𝑡|
16𝜋

(8𝜋−
ˆ

Σ𝑡

R⊤d𝜎
⏟⏟⏟⏟⏟⏟⏟
≥0 Gauss-Bonnet

+
ˆ

Σ𝑡

∣ ̊h∣2 +R+ |∇⊤H|2

H2 d𝜎) ≥ 0.

𝔪𝐻(Σ𝑡) is monotone non-decreasing.
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Assume that the flow is given by the level set of a function 𝑢 ∶ 𝑀 −Ω →R such that {𝑥 ∶ 𝑢(𝑥) = 𝑡} = 𝐹(𝑡,⋅).
Then, for 𝑝 ∈ 𝑁 we have

1 = 𝜕
𝜕𝑡

𝑡 = 𝜕
𝜕𝑡

𝑢(𝐹(𝑡,𝑝)) = ⟨∇𝑢,𝜕𝑡𝐹(𝑡,𝑝)⟩ = ⟨∇𝑢, 𝜈(𝐹(𝑡,𝑝))
H(𝐹(𝑡,𝑝))

⟩ = 1
H(𝐹(𝑡,𝑝))

⟨∇𝑢, ∇𝑢
|∇𝑢|

⟩,

hence,

H = |∇𝑢|.

Keeping in mind that H = div( ∇𝑢
|∇𝑢| ) = Δ1𝑢, we derive the level set formulation of IMCF.

Level set formulation

Given Ω ⊆ 𝑀 closed and bounded, we define 𝑤1 as the solution to

⎧
{
⎨
{
⎩

Δ1𝑤1 = |∇𝑤1| on 𝑀 −Ω,
𝑤1 = 0 on 𝜕Ω,
𝑤1 → +∞ as d(𝑥,Ω) → +∞,
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Given Ω ⊆ 𝑀 closed and bounded, we define 𝑢2 as the solution to

⎧
{
⎨
{
⎩

Δ𝑢2 = 0 on 𝑀 −Ω,
𝑢2 = 1 on 𝜕Ω,
𝑢2 → 0 as d(𝑥,Ω) → +∞,

If a solution exists and Ω is a regular domain, then 𝑢2 ∈ 𝐶∞(𝑀 ∖Ω̊) is unique and it is smooth till the

boundary of Ω. By Sard theorem, the set of critical values of 𝑢2 has zero Lebesgue measure.

Notice that 𝑤2 = −log(𝑢2) solves

⎧
{
⎨
{
⎩

Δ𝑤2 = |∇𝑤2|2 on 𝑀 −Ω,
𝑤2 = 0 on 𝜕Ω,
𝑤2 → +∞ as d(𝑥,Ω) → +∞,
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Suitable variants of the Dirichlet Energy

𝒢2 =
ˆ

Σ
|∇𝑢|2d𝜎

are monotone on the level set of harmonic functions.

Non-exhaustive list of applications:

∘ Uniqueness of smooth tangent cones at infinity in Ricci-flat manifolds [Colding ’12 ⋅ Acta
Math.],[Colding, Minicozzi ’14 ⋅ Invent. Math.]

∘ Riemannian positive mass theorem [Agostiniani, Mazzieri, Oronzio ’24 ⋅ CMP], [Cederbaum,

León Quirós, Meco ’25]

∘ Willmore inequality [Agostiniani, Fogagnolo, Mazzieri ’20 ⋅ Invent. Math.] [Cederbaum, Miehe ’25 ⋅
Trans. Am. Math. Soc.]

∘ Characterization of Ricci pinched 3-manifolds [Benatti, Mantegazza, Oronzio, P , ’25 ⋅ J. Geom.

An.]

https://doi.org/10.1007/s11511-012-0086-2
https://doi.org/10.1007/s11511-012-0086-2
https://doi.org/10.1007/s00222-013-0474-z
https://doi.org/10.48550/arXiv.2108.08402
https://doi.org/10.1090/tran/9445
https://doi.org/10.1090/tran/9445
https://doi.org/10.1007/s00222-020-00985-4
https://doi.org/10.1090/tran/9445
https://doi.org/10.1090/tran/9445
https://doi.org/10.1007/s12220-025-02095-0
https://doi.org/10.1007/s12220-025-02095-0
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8 IMCF Harmonic functions

{
𝜕𝑡𝐹(𝑝,𝑡) = 𝜈(𝐹(𝑡,𝑝))

H(𝐹(𝑡,𝑝))

𝐹(0,𝑝) = 𝐹0(𝑝)

⎧
{
⎨
{
⎩

Δ𝑢2 = 0 on 𝑀 −Ω,
𝑢2 = 1 on 𝜕Ω,
𝑢2 → 0 as d(𝑥,Ω) → +∞,

Reformulation

Level set formulation

⎧
{
⎨
{
⎩

Δ1𝑤1 = |∇𝑤1| on 𝑀 −Ω,
𝑤1 = 0 on 𝜕Ω,
𝑤1 → +∞ as d(𝑥,Ω) → +∞,

Change of variable

⎧
{
⎨
{
⎩

Δ𝑤2 = |∇𝑤2|2 on 𝑀 −Ω,
𝑤2 = 0 on 𝜕Ω,
𝑤2 → +∞ as d(𝑥,Ω) → +∞,

Monotone quantities

Willmore energy ℱ1(𝑡) =
´

𝜕Ω𝑡
H2 d𝜎

Hawking mass 𝔪𝐻(Σ) ≔ √ |Σ|
16𝜋 (1− 1

16𝜋
´

ΣH2 d𝜎)
Dirichlet energy 𝒢2(𝑡) =

´
Σ𝑡

|∇𝑤2|2d𝜎
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Definition p-IMCF

Let 𝑝 ∈ [1,2]. Given Ω ⊆ 𝑀 closed and bounded, we define 𝑤𝑝 as the solution to

⎧
{
⎨
{
⎩

Δ𝑝𝑤𝑝 = |∇𝑤𝑝|𝑝 on 𝑀 −Ω,
𝑤𝑝 = 0 on 𝜕Ω,
𝑤𝑝 → +∞ as d(𝑥,Ω) → +∞,

(p-IMCF)

where Δ𝑝𝑓 = div(|∇𝑓|𝑝−2∇𝑓).

We denote Ω(𝑝)
𝑡 = {𝑤𝑝 ≤ 𝑡}.

∘ 𝑝 = 2: linear potential theory, 𝑢2 = exp(−𝑤2) is harmonic.

∘ 𝑝 ∈ (1,2): nonlinear potential theory (NPT), 𝑢𝑝 = exp(−𝑤𝑝/(𝑝−1)) is 𝑝-harmonic.

∘ 𝑝 = 1: weak inverse mean curvature flow [Huisken, Ilmanen ’01 ⋅ JDG].

Proposition [Moser ’07 ⋅ JEMS], [Kotschwar, Ni ’09 ⋅ Ann. Sci. Éc. Norm. Supér.]

If 𝑤𝑝 exists for every 𝑝 ∈ [1,2], then 𝑤𝑝 → 𝑤1 locally uniformly as 𝑝 → 1+ .

https://doi.org/10.4310/jdg/1090349447
https://doi.org/10.4171/JEMS/73
https://doi.org/10.24033/asens.2089
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Aim

We want to approximate monotonic quantities along the IMCF with monotonic quantities in NPT.

Step 1: Approximation of the Willmore energy

Construction of ℱ𝑝 proxy for ℱ1 =
´

Σ𝑡
H2d𝜎.

Formally,

∘ ℱ𝑝 should coincide with ℱ1 in the limit 𝑝 → 1+ .

∘ ℱ′
𝑝 should coincide with ℱ′

1 in the limit 𝑝 → 1+ .

∘ ℱ𝑝 should be monotone along Δ𝑝𝑤𝑝 = |∇𝑤𝑝|𝑝 .
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Consider as model case 𝑀 =R3 and Ω with radial symmetry. Call 𝑤𝑝 and 𝑤1 the solutions to

Δ𝑝𝑤𝑝 = |∇𝑤𝑝|𝑝 and Δ1𝑤1 = |∇𝑤1|, respectively.

Then, 𝑤𝑝 = (3−𝑝)log|𝑥|, 𝑤1 = 2log|𝑥| and the relation 2
3−𝑝 𝑤𝑝 = 𝑤1 is satisfied. Hence

2
3−𝑝 ∣∇𝑤𝑝∣ = |∇𝑤1| = H.

The term (H− 2
3−𝑝 |∇𝑤𝑝|)

2
is a sort of deficit from the model case of IMCF in R3 .

Possible candidates are

ℱ𝑝(𝑡) =
ˆ

𝜕Ω𝑡

H2−(H− 2
3−𝑝 ∣∇𝑤𝑝∣)

2
d𝜎 and 𝒢𝑝(𝑡) =

ˆ
𝜕Ω𝑡

4|∇𝑤𝑝|2

(3−𝑝)2 .
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From direct computation we have

ℱ′
1(𝑡) = −2

ˆ
𝜕Ω𝑡

|∇⊤H|2

H2 +∣ ̊h∣2 +Ric(𝜈,𝜈)d𝜎,

ℱ′
𝑝(𝑡) = − 4

3−𝑝

ˆ
𝜕Ω𝑡

|∇⊤|∇𝑤𝑝||2

|∇𝑤𝑝|2
+∣h̊∣2 +Ric(𝜈,𝜈)+ 3−𝑝

2(𝑝−1)
(H− 2

3−𝑝 ∣∇𝑤𝑝∣)
2

d𝜎

𝒢′
𝑝(𝑡) = 4

𝑝−1

ˆ
𝜕Ω𝑡

2
|∇𝑤𝑝|2

(3−𝑝)2 −
|∇𝑤𝑝|H

3−𝑝
d𝜎 = 1

𝑝−1
(𝒢𝑝(𝑡)−ℱ𝑝(𝑡))

If Ric ≥ 0, then ℱ′
𝑝(𝑡) ≤ 0. Moreover,

(e− 1
𝑝−1 𝑡𝒢′

𝑝(𝑡))
′

= e− 1
𝑝−1 𝑡(𝒢″

𝑝(𝑡)− 1
𝑝−1

𝒢′
𝑝(𝑡)) = − e− 1

𝑝−1 𝑡

𝑝−1
ℱ′

𝑝(𝑡) ≥ 0.

If, in addiction, AVR(𝑔) > 0, this implies 𝒢′
𝑝(𝑡) ≤ 0, thus

0 ≤ 𝒢𝑝(𝑡) ≤ ℱ𝑝(𝑡) ≤ ℱ1(𝑡)

ℱ𝑝 is monotone non-increasing.
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Step 2: “p-version” of the Hawking mass 𝔪𝐻(Σ) ≔ √ |Σ|

16𝜋 (1− 1
16𝜋
´

ΣH2 d𝜎). We need to

∘ approximate the area term, maintaining its scaling;

∘ maintain the exponetial growth along the flow.

Definition Normalized 𝑝-capacity
Let Ω be a closed, bounded set in 𝑀. The normalized 𝑝-capacity of Ω is defined as

𝔠𝑝(𝜕Ω) ≔ inf{ 1
4𝜋

( 𝑝−1
3−𝑝

)
𝑝−1ˆ

𝑀∖Ω
|∇𝜙|𝑝d𝜇 ∶ 𝜙 ∈ C ∞

𝑐 (𝑀),𝜙 ≥ 1onΩ}

It holds 𝔠𝑝(𝜕Ω𝑡) = e𝑡𝔠𝑝(𝜕Ω) and 𝔠𝑝(𝜕Ω) =
ˆ

𝜕Ω
(

|∇𝑤𝑝|
3−𝑝

)
𝑝−1

d𝜎.

As 𝑝 → 1+ we have that 𝔠𝑝(Σ) tends to |Σ∗|, where Σ∗ is the outward minimizing hull of Σ [Fogagnolo,

Mazzieri ’22 ⋅ JFA].

Natural choice:

𝔪(𝑝)
𝐻 (Σ) ≔

𝔠𝑝(Σ)
1

3−𝑝

2
(1− 1

16𝜋

ˆ
Σ

H2−(H− 2
3−𝑝 ∣∇𝑤𝑝∣)

2
d𝜎)

https://doi.org/10.1016/j.jfa.2022.109638
https://doi.org/10.1016/j.jfa.2022.109638
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Finally, we would like to “summarize” setting 1 and setting 2 in the same functional, that then can be

“specialized” both to Willmore-type energies and Hawking-type masses.

ℱ𝑝(𝜕Ω𝑡) = 𝔠𝑝(𝜕Ω𝑡)
𝛼

𝑛−𝑝 −1
ˆ

𝜕Ω𝑡

∣∇𝑤𝑝∣𝛼+𝑝−2[H−( 𝑛−1
𝑛−𝑝

− 1
𝛼

)∣∇𝑤𝑝∣]d𝜎

+
ˆ 𝑡

0
𝔠𝑝(𝜕Ω𝑠)

𝛼
𝑛−𝑝 −1

ˆ
𝜕Ω𝑠

∣∇𝑤𝑝∣𝛼+𝑝−3Ric(𝜈,𝜈)d𝜎d𝑠.

With this correction term, we have a monotone functional in (𝑀,𝑔) noncompact, complete,

Riemannian manifold of dimension 𝑛 ≥ 3, without restrictions nor on Ric neither on R of 𝑀.
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⎧
{
⎨
{
⎩

Δ𝑝𝑤𝑝 = |∇𝑤𝑝|𝑝 on 𝑀 −Ω,
𝑤𝑝 = 0 on 𝜕Ω,
𝑤𝑝 → +∞ as d(𝑥,Ω) → +∞,

⎧
{
⎨
{
⎩

Δ1𝑤1 = |∇𝑤1| on 𝑀 −Ω,
𝑤1 = 0 on 𝜕Ω,
𝑤1 → +∞ as d(𝑥,Ω) → +∞,

As 𝑝 → 1+, solutions converge to solutions and level sets to level sets.

ℱ𝑝(𝑡) =
ˆ

𝜕Ω𝑡

H2−(H− 2
3−𝑝 ∣∇𝑤𝑝∣)

2
d𝜎

ℱ′
𝑝(𝑡) = − 4

3−𝑝

ˆ
𝜕Ω𝑡

|∇⊤|∇𝑤𝑝||2

|∇𝑤𝑝|2
+∣h̊∣2 +Ric(𝜈,𝜈)

+ 3−𝑝
2(𝑝−1)

(H− 2
3−𝑝 ∣∇𝑤𝑝∣)

2
d𝜎

ℱ1(𝑡) =
ˆ

𝜕Ω𝑡

H2 d𝜎

ℱ′
1(𝑡) = −2

ˆ
𝜕Ω𝑡

|∇⊤H|2

H2 +∣h̊∣2 +Ric(𝜈,𝜈)d𝜎

ℱ𝑝(𝑡) approximate ℱ1(𝑡), also at the level of their derivatives.



3 Limitations of the smooth setting
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Theorem [Gerhardt ’90 ⋅ JDG],[Urbas ’90 ⋅ Math.Z.]

Any compact, star-shaped initial surface remains star-shaped and smooth along the flow and be-

comes an expanding round sphere as 𝑡 → +∞.

The classical IMCF could develop singularities.

Example:

The level set formulation Δ1𝑤1 = |∇𝑤1|
∘ is a degenerate elliptic PDE,

∘ is not the Euler-Lagrange equation of a

functional.

Existence and regularity theory for weak IMCF

is delicate [Huisken, Ilmanen ’01 ⋅ JDG].

https://doi.org/10.4310/jdg/1090349447
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p-IMCF p-IMCF

Regularity

𝑤𝑝 ∈ C 1,𝛽 and smooth on {∇𝑤𝑝 ≠ 0}
|∇𝑤𝑝| ∈ 𝑊 1,2 𝑤1 is Lipschitz

Regularity of level sets

|∇𝑤𝑝| ≠ 0 almost everywhere on 𝜕Ω𝑡 for a.e. 𝑡
𝜕Ω𝑡 is smooth away from the critical set.

Ω𝑡 is strictly outward minimizing

𝜕Ω𝑡 admits a weak mean curvature H > 0
𝜕Ω𝑡 is C 1,𝛽 out of a set of dimension 𝑛−8.

Goal: Interpret the level sets as (weak) surfaces, regular enough to get a notion of mean

curvature, second fundamental form, and Gauss curvature.



4 GMTmeets PDE
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ℱ′
𝑝(𝑡) = − 4

3−𝑝

ˆ
𝜕Ω(𝑝)

𝑡

|∇⊤|∇𝑤𝑝||2

|∇𝑤𝑝|2
+∣h̊∣2 +Ric(𝜈,𝜈)

+ 3−𝑝
2(𝑝−1)

(H− 2
3−𝑝 ∣∇𝑤𝑝∣)

2
d𝜎

ℱ′
1(𝑡) = −2

ˆ
𝜕Ω(1)

𝑡

|∇⊤|∇𝑤𝑝||2

|∇𝑤𝑝|2
+∣h̊∣2 +Ric(𝜈,𝜈)d𝜎

∘ Goal 1: give meaning to all the terms in

the formal derivative.

∘ Goal 2: (strong enough) convergence

result.

Theorem [Benatti, P , Pozzetta ’24]

For every 𝑝 ∈ [1,2], almost every 𝜕Ω(𝑝)
𝑡 is a curvature varifold.

Moreover,

∘ 𝜕Ω(𝑝)
𝑡 converges (up to subsequence) to 𝜕Ω(1)

𝑡 in the sense of curvature varifolds for a.e. 𝑡 > 0.

∘ 𝑤𝑝 → 𝑤1 in 𝑊 1,𝑞
loc for 𝑞 < +∞.

https://doi.org/10.48550/arXiv.2411.06462
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19 Step 1. almost every 𝜕Ω(𝑝)
𝑡 is a curvature varifold.

𝜀-regularization and a priori bounds. This gives meaning to all terms in

ℱ′
𝑝(𝑡) = − 4

(3−𝑝)

ˆ
𝜕Ω(𝑝)

𝑡

|∇⊤|∇𝑤𝑝||2

|∇𝑤𝑝|2
+∣ ̊h∣2 +Ric(𝜈,𝜈)+ 3−𝑝

2(𝑝−1)
(H− 2

3−𝑝 ∣∇𝑤𝑝∣)
2

d𝜎.

Step 2. 𝜕Ω(𝑝)
𝑡 converges to 𝜕Ω(1)

𝑡 in the sense of curvature varifolds for a.e. 𝑡 > 0.

1. |𝜕Ω(𝑝)
𝑡 |

𝑝→1+

−−−−→ |𝜕Ω(1)
𝑡 | for almost every 𝑡.

2.

ˆ
𝜕Ω(𝑝)

𝑡

(∣∇𝑤𝑝∣−H)2d𝜎
𝑝→1+

−−−−→ 0.

3.

ˆ
𝜕Ω(𝑝)

𝑡

|h|2d𝜎 is bounded.

1. + 2. ⇒ convergence in the sense of varifolds.

2. + bound on
´

|h̊|
2

⇒ 3.

1. + 2. + 3. ⇒ convergence as curvature varifolds.

Step 3. Gradient convergence.

Combine: ∘ ∇𝑤𝑝
𝑝→1+

−−−−⇀ ∇𝑤1 weakly in 𝐿𝑞

∘ ∥𝑤𝑝∥
𝐿1

loc

𝑝→1+

−−−−→ ‖𝑤1‖𝐿1
loc

∘ lim
𝑝→1+

ˆ 𝑇

0

ˆ
𝜕Ω(𝑝)

𝑡

|𝜈(𝑝) −𝜈(1)|2d𝜎d𝑡 = 0
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For 𝑝 ∈ (1,2), we do not have enough regularity to define an Euler characteristic that encompass the

topological properties of the level sets.

A weak induced scalar curvature can be defined through an integral version of the Gauss equation:
ˆ

Σ
R⊤d𝜎 =

ˆ
Σ

R−2Ric(𝜈,𝜈)+H2−|h|2d𝜎

Theorem [Benatti, P , Pozzetta ’24]

Let (𝑀,𝑔) be a complete, noncompact 3-dimensional Riemannian manifold. Let 𝑝 ∈ (1,2) and 𝑤𝑝 be

the solution to Δ𝑝𝑤𝑝 = |∇𝑤𝑝|𝑝 . Then, for almost every 𝑡 ∈ [0,+∞) it holds
ˆ

𝜕Ω𝑝
𝑡

R⊤d𝜎 ∈ 8𝜋Z.

https://doi.org/10.48550/arXiv.2411.06462
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