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Solids have a crystalline structure, and a piece of metal is actually (much) more complicated
than a unique crystal. Most of the technological materials are polycrystalline: they are composed
of several pieces (grains) in which the crystal lattice is rotated in different ways, delimited
by grain boundaries. Grain boundaries have a profound impact on materials properties (for
instance electrical and thermal conductivity) and therefore their performance. The challenge
in polycrystals is then the development of process technology, in other words the way we make
materials, that will allow us to arrange grains in a way that gives us the property we desire,
these properties can be said strength, toughness, electrical resistivity.

One way that the grain structure is tailored or engineered is through grain growth. To
model grain growth is an old problem and it attracted the attention of applied scientists and
then mathematicians. Already in 1956, Mullins considered the 2-dimensional version in thin
films and observed that the grain boundaries of a recrystallized metal, when annealed, move
with a velocity proportional to the curvature [Mul56]. Thus, in a first approximation, the grain
boundary and the grain growth can be described as a finite union of curves that meet at junctions
(a network) that moves by curvature (the normal velocity of each curvature at each point and
time is its curvature). The system evolves so as to reduce the energy, hence we consider the L2-
gradient flow of the length functional and we expect to see networks with only triple junctions
at almost all times. The equilibrium state should actually be a single crystal and one of the
defining features of evolution is that the network undergoes changes in topology.

It is fair to say that in the last years there have been progresses concerning both in situ–
experiments, simulations and mathematical models [Bar+17; ELM21b; ELM21a; KMT]. Un-
fortunately at the moment experiments cannot give us precise information about the dynamics
of the motion of grain boundaries, thus we still have to relies on good models and simulations.

The first attempt to study the network flow from a mathematical point of view has been by
Brakke [Bra78], who developed a geometric-measure-theoretic method to define the evolution.
While his definition is very powerful and useful in its own way (it provide global existence), it
does not give a very detailed picture of the evolution itself, hence the need of a definition based
on classical PDE solutions. My final goal is the study of evolution by curvature of cluster of
surfaces as a simplified model of grain growth. Concerning the 2-dimensional version, I aim to
a complete analysis of the network flow in a PDE framework, from well–posedness, to the study
of long–time behaviour and asymptotic analysis as time goes to infinity [Man+16; PT24].

A precise analysis of singularities in some special cases can be used as a benchmark on the
reliability of simulations. On the other hand, simulations can be an inspiration for the theoretical
study of the flow.
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In numerical simulations we see that the networks completely rearrange itself any time we
have a topological discontinuity and larger grains “eat” smaller ones. The most prominent
features that eyes pick up is the increasing average size of (surviving) grains [Bra; Ese].
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Figure 1. Expected evolution of a complicated network

Between the period of critical events we know exactly how the area of a grain grows with
time: the grains follow the so-called Von Neumann rule. Consider indeed a grain bounded by a
loop ℓ composed of m curves. By Gauss–Bonnet we have

∂tA =

ˆ
ℓ
k ds =

(m
3

− 2
)
π ,

hence the area of grains bounded by more than six curves grows linearly, by less than six
curves decreases linearly and the area of hexagonal cells remains constant. Moreover, by Hölder
inequality ∣∣∣2− m
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∣∣∣π ≤
ˆ
ℓ
|k| ≤

(ˆ
ℓ
κ2

) 1
2 √

L(ℓ) ,

that is ˆ
ℓ
κ2 ds ≥ C

L(ℓ)
,

with C that is different from zero for non–hexagonal cells. If we suppose that all grains are
very similar to each other and the percentage of non–hexagonal grains is sufficiently high during
evolution, we can actually formally prove that the average area of the (surviving) grains grows
linearly. Consider an initial network composed of N2 grains in the flat torus and let it evolve
by the network flow. We pass from the above estimate on a single grain to the estimate on the
entire network simply by multiplying by the number of grains and keeping in mind that the
average length of a single loop is of order 1/N :ˆ

N
k2 ds ≳ N♯ (non–hexagonal grains) = N3 .

The evolution law of the the total length of the network reads

d

dt
L(N ) = −

ˆ
N
k2 ds .

Now we use the fact that the length of the network is of order N and we put together the last
two formula, getting the differential inequality:

d

dt
N(t) ≲ −N3(t) ,
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Thus the average area (that is of order 1/N2) grows at least linearly in time

1

N(t)2
≥ 2Ct .

It is not difficult to show another property of the flow that indicate that the structure/topology
of the networks should be simplified during the evolution. When the flow develops a multiple
junction where at most five curves, then the multiple junction will be split in triple junctions
and locally all the flowouts will be without loops. Hence, by an easy computation involving the
Euler characteristic, one shows that the total number of curves decreases at least by three and
the total number of triple junctions decreases at least by two.

To conclude, in my talk I also showed a quantitative estimate of the size of the basin of
local minimality of regular networks with straight segments. The estimate, obtained by local
calibrations [PP23], indicates that the volume of the basin of attraction of all the many critical
points of the length functional is expected to be small in the space of networks hence it is unlikely
that the flow gets stuck in a configuration composed of lots of hexagonal grains.
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