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Geometric flows are parabolic partial differential equations that aim to deform a geometric
objects to simplify them (e.g. to reduce its topological complexity or to make it more symmetric).
They have been applied to a variety of topological, analytical and physical problems, giving in
some cases very fruitful results. Among other geometric equations the Mean Curvature Flow has
been extensively studied. This flow can be regarded as the gradient flow of the area functional: a
n–dimensional time dependent surface evolves with normal velocity its mean curvature. Nowa-
days the mean curvature flow of a smooth submanifold is deeply understood. The situation is
different when we consider the evolution of generalized, possibly singular, submanifolds. The
simplest example of motion by mean curvature of a set which is essentially singular is the evolu-
tion of networks: 1–dimensional connected sets composed of a finite number of curves that meet
at junctions. This is the case of our interest.

Appearing initially in materials science as a model for the evolution of grain boundaries
in polycrystals, this flow was later treated by Brakke [1] using varifold methods. A network of
curves is a “nearly smooth” object, hence one is tempted to describe its evolution by a direct PDE
approach, but doing so requires one to deal with the singular nature of the PDE at the vertices of
the network. Interpreting the junctions as boundary points (free to move during the evolution),
Bronsard and Reitich [2] proved a short time existence result with initial datum a regular network
composed of three curves meeting at a triple junction forming equal angles. However, this class
of networks, is not preserved by the flow: two triple junctions might coalesce while the curva-
ture remains bounded [10], or an enclosed region bounded by a loop of curves in the network
might collapse to a point [11].
We would like to know whether this limiting network can evolve past this singular time. Thus
the motivation to understand how to start/restart the flow from a network of curves with “ir-
regular” multiple junctions goes beyond the basic inherent interest in enlarging the class of ad-
missible initial data. Keeping in mind that stable critical points of the length functional present
only triple junctions whose unit tangent vectors at the junctions sum up to zero, we expect to
see configurations of this kind for almost all times. We must, in particular, show precisely how
a single multi–point gives birth to a cluster of triple junctions.
The short time existence for irregular networks [7, 8] reads as follow: let Γ0 be an initial network
of class C2 and at least one interior vertex is irregular. Then there exists a time T > 0 and an
evolving family of regular networks Γt, 0 < t < T , with the property that Γt → Γ0 uniformly.
Moreover the set of these possible flowouts is classified by the collection of all “expanding soliton
solutions” of the flow at each interior vertex.
This results was first proved in [7], but our approach in [8] draws out some important features
and precise information not accessible by the previous method. The inspiration for the construc-
tions, that we briefly describe now, comes from the methods of geometric microlocal analysis.

Let k ≥ 3 and suppose that p is a k–valent irregular vertex of our initial network Γ0 where
the curves γ(1), . . . , γ(k) meet. Denoting by τj the unit tangent vector to γj at p, the incoming
edges at p determine a fan of rays `j = R+τj in R2 emanating from p. There exists at least one
(typically many) expanding soliton solution for the network flow which has this fan as its initial
condition [15]. Choose one of these solutions, and denote it by Sp. Having made this choice for
every irregular interior vertex, we prove that there exists a unique solution Γt of the network
flow, defined on some interval 0 < t < T , whose combinatorics are the same as if we were to
replace a small ball around each irregular vertex p with the corresponding choice of soliton Sp.
This solution converges to Γ0 as t→ 0.

One striking feature is that if there are k–valent irregular vertex, then there exists more than
one solution to the network flow emanating from the given initial configuration.
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Once established a solid short time existence results, the long time behavior of the evolution
deserves to be investigated. Suppose that Γt is a maximal solution to the network flow in [0, T ).
Then if T is finite, either the inferior limit of the length of at least one curve of the networkN (t)
is zero or the superior limit of the L2–norm of the curvature of the network is +∞ [12, 6]. There
are explicit examples of all these behaviors [11, 16].
Now when T = +∞ we want to understand whether Γt converges to a critical point of the
length functional. Instead when the flow develops a singularity at a finite time, we aim at a
deeper understanding of the singular limit of Γt as t → T−, by means of the analysis of tan-
gent flows (sequences of space-time rescalings of the flow that exists for all times). One of the
main difficulty is to understand whether the limits as t → ∞ of such rescalings is unique, i.e.,
whether the tangent flow do not depend on the choice of the rescaling sequence. Hence, both
to understand the singularities of the flow and its asymptotic behavior, the key points is the
existence of a full limit critical point as t tends to +∞ of certain gradient flows. This issue can
be address by means of the so-called Łojasiewicz–Simon gradient inequalities introduced in the
seminal works [9, 18]. Roughly speaking, an energy functional E satisfies a Łojasiewicz–Simon
inequality in the neighborhood U of a critical point if a concave power of the difference in en-
ergy between the critical point and a point in U can be bounded from above by a norm of the
gradient of E. It turns out that if the given energy E satisfies Łojasiewicz–Simon inequalities in
neighborhoods of its critical points, then the gradient flow for E existing for all times converges
to a critical point at t→ +∞ (see [3, 13, 14]).
The study of the network flow imposes new difficulties on the application of the aforementioned
results carried out for flows of smooth submanifolds, because of the natural singularities of our
evolving objects. In [16] we overcome these technical issues and we prove a Łojasiewicz–Simon
inequality for the length functional of networks suitably close to minimal ones. This allows us
to prove not only the smooth convergence of the network flow whenever it does not develop
singularities, but also the stability of minimal networks: for initial data suitably close to mini-
mal networks, the evolution exists for all times without singularities and it smoothly converges
to a critical point.
The same method has been applied in [17] to prove the uniqueness of compact blowups of
network flow. We plan to investigate the (much more difficult) case of possibly noncompact
blowups, also exploiting the recent fundamental achievement on the same problem for mean
curvature flow of hypersurfaces [5, 4].
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