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Abstract

We consider networks of curves in the plane moving according to the L2–gradient
flow of the elastic energy. We prove short time existence in the case of networks com-
posed of three curves that are required to meet at one or two triple junctions. As a
variation of the result we additionally impose that they form angles of 120 degrees at the
triple junction(s).

A planar network N is a connected set composed of a finite number of sufficiently smooth
curvesN i that meet at junctions. We consider two types of networks of three curves, namely
Theta Networks and Triods. A Theta Network consists of three curves that intersect each
other at their endpoints in two triple junctions. Each of the three regular curves of a Triod has
one endpoint fixed in the plane while the other three endpoints meet at one triple junction.
Denoting by si and ki the arc length parameter and curvature of the curve N i, the elastic
energy with global length penalisation is given by

Eµ(N ) :=
3∑
i=1

∫
N i

((
ki
)2

+ µ
)

dsi , µ ≥ 0 .

We consider the L2-gradient flow of the energy Eµ: we let evolve an initial network N0

(Triod or Theta) with a normal velocity that induces the steepest descent of the energy with
respect to the L2–inner product under the constraint that the topology of the initial object
is maintained during the flow. The curves of a Theta Network stay attached at two triple
junctions which are allowed to move during the flow. In the case of a Triod the curves
remain connected at one possibly moving triple junction while the other endpoints are fixed
in the plane. Situations in which the angles at the 3–points are not prescribed are called
C0–flow in contrast to the C1–flow where the curves are required to meet with angles of 120
degrees at the triple junction(s) during the evolution.
The elastic flow for networks was first proposed by Barrett, Garcke and Nürnberg: in [1] it
is shown that if a network moves according to the L2–gradient flow of Eµ, then the normal
velocity of each of its curves is given by

−2kss − k3 + µk .

Depending on whether one imposes an angle condition at the junction(s) (C1–flow) or not
(C0–flow), different conditions result at the 3–points. In the case of a Triod different scenar-
ios are possible at the fixed endpoints. Either the curvature is zero at the fixed endpoints
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Figure 1: A Theta Network with angle condition and a Triod.

(Navier) or we prescribe both the position of the endpoints in the plane and the direction of
the tangents of the curves at the fixed endpoints (clamped).
To answer the question whether these boundary conditions lead to a well posed evolution
problem, we decided to look for classical solutions. Each evolving curve N i of the network
N is required to admit a time dependent parametrisation

γi ∈ C
4+α
4
,4+α([0, T ]× [0, 1]) =: EiT .

As a consequence we have to restrict ourselves to initial networks that are admissible in
the sense that they satisfy certain compatibility conditions. Among some other geometric
assumptions they need to admit a parametrisation of class C4+α and satisfy all the boundary
conditions that need to be valid during the evolution of the respective flow.

Theorem 0.1. Let N0 be a geometrically admissible initial network for the C0–flow (or the C1–
flow) of a Theta Network or the C0–flow (or C1–flow) of a Triod with Navier boundary conditions,
respectively. Then there exists a positive time T such that within the interval [0, T ] the respective
flow admits a unique solution (N (t)).

The solution is unique in the sense of networks as sets. We state two of the four possible
boundary value problems that are covered by the above Theorem. In the following we de-
note by νi = Rτ i the normal of the respective curve being the counterclockwise rotation of
the tangent τ i by π

2 . The subscripts s and t refer to differentiation with respect to time and
the arclength parameter, respectively. All equations are supposed to be valid in the entire
time interval [0, T ].

Definition 0.2 (C1–flow for a Theta Network). A family of Theta Networks (Θ(t)) solves the
C1–flow with admissible initial network Θ0 on [0, T ] if there exist parametrisations γi ∈ EiT
such that for y ∈ {0, 1} and i ∈ {1, 2, 3}

〈
γit , ν

i
〉

= −2kiss −
(
ki
)3

+ µki motion,
γ1 (t, y) = γ2 (t, y) = γ3 (t, y) concurrency condition,
τ1(t, y) + τ2(t, y) + τ3(t, y) = 0 angle condition,
k1(t, y) + k2(t, y) + k3(t, y) = 0 curvature condition,∑3

i=1

(
2kisν

i + (ki)2τ i
)

(t, y) = 0 third order condition,
Θ(0) = Θ0 initial data .

(0.1)

Definition 0.3 (C0–flow for a Triod with Navier condition at the fixed endpoints). A family
(T(t)) is a solution to the Navier C0–flow for a Triod with admissible initial network T0 if
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there exist parametrisations γi ∈ EiT such that

〈
γit , ν

i
〉

= −2kiss −
(
ki
)3

+ µki motion,
γ1 (t, 0) = γ2 (t, 0) = γ3 (t, 0) concurrency condition,
ki(t, 0) = 0 curvature condition,∑3

i=1

(
2kisν

i − µτ i
)

(t, 0) = 0 third order condition,
γi(t, 1) = P i fixed endpoints,
ki(t, 1) = 0 Navier condition,
T(0) = T0 initial data .

(0.2)

The strategy to prove existence and uniqueness of classical solutions can be divided into
three steps. First we derive a parabolic quasilinear fourth order system of PDEs for the
parametrisation which we then solve in a unique way. The last step is to pass from the
parametrisations and the PDE back to the networks and the degenerate problem. For details
we refer to [3].

In the systems (0.1) and (0.2) only the normal velocity is prescribed. To turn this degenerate
equation into a parabolic equation one has to specify a suitable tangential movement which
at the 3–points is uniquely determined by the normal velocity and the concurrency con-
straint. The resulting non-degenerate system for the parametrisation is under-determined
in the sense that at each triple junction three scalar boundary conditions are missing. To
remove these tangential degrees of freedom at the 3–points one has to carefully choose con-
ditions on the parametrisation that on the one hand yield a well-posed PDE and on the other
hand do not affect the geometric problem. The condition〈

γixx, τ
i
〉

= 0 at 3–points

satisfies these requirements. To prove existence and uniqueness of the PDE we linearise all
equations around a fixed initial parametrisation. The unique solvability of the linear system
relies on the fact that the coupled boundary conditions are compatible. Here we use the
theory in [4]. We obtain existence and uniqueness of the original PDE with a fixed point
argument. To come back to the geometric problem the crucial point is to check that the
tangential velocity and the boundary conditions one has chosen don’t change the geometry
of the problem but can always be obtained by parametrising the objects appropriately. To do
this we follow the approach in [2].
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